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In this appendix, we describe two alternative clock auction formats and illustrate the rate of

convergence of the optimal prior-free clock auction. In Section 1, we describe discriminatory

clock auctions in a setting in which the designer can a priori place subsets of buyers and sub-

sets of sellers into groups of symmetric agents while allowing for asymmetries across different

groups. In Section 2, we describe quasi-clock auctions that implement the Bayesian optimal

mechanism in a two-sided setup without violating privacy preservation for any trading agents

other than the marginal pair. In Section 3, we discuss and illustrate rates of convergence.

1 Discriminatory clock auctions

Generalized Bayesian mechanism design setting

We now allow, without requiring, the possibility that agents have characteristics that are

observable to the designer, so that the designer can a priori place subsets of agents into groups

of symmetric agents while allowing for asymmetries across different groups. For example,

traders of carbon emission permits might be identifiable as either power plants, cement

manufacturers, or other manufacturers, with traders within a group being symmetric, but

with the possibility of asymmetries across groups.

Let N and M denote the sets of buyers and sellers with cardinalities n and m. Let ZB

and ZS be the sets of groups for buyers and sellers when private information pertains to

both sides of the market. (When only one side is privately informed, there is, of course, no

point distinguishing between groups on the side of the market without private information.)

We refer to the setup in which |ZB| = |ZS| = 1 studied thus far as the symmetric setup. Let

nb ≥ 1 be the number of buyers in buyer group b and let ms ≥ 1 be the number of sellers

in group s, where n =
∑

b∈ZB n
b and m =

∑
s∈ZS m

s. We assume that at least one buyer

group and at least one seller group has 2 or more members. The group membership of each

buyer and seller is common knowledge.

Each buyer in group b draws its value independently from the continuously differentiable

distribution F b with support [vb, vb] and positive density f b, and each seller in group s draws

its cost independently from the continuously differentiable distribution Gs with support

[cs, cs] and positive density gs. Each agent is privately informed about its type, but the

types and distributions from which they are drawn are unknown to the mechanism designer

and the agents. The designer only knows the group identity of each buyer and seller, that

agents in the same group draw their types from the same distribution, that group-specific
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weighted virtual types given by

Φb
α(v) ≡ v − α1− F b(v)

f b(v)
and Γsα(c) ≡ c+ α

Gs(c)

gs(c)

are increasing for each buyer and seller group and that the supports satisfy the no-full trade

condition

min
s∈ZS
{cs} ≥ max

b∈ZB
vb > min

s∈ZS
{cs} ≥ max

b∈ZB
{vb},

which generalizes the no-full trade condition (1), that is, the assumption that c ≥ v > c ≥ v,

to the setup with heterogeneous groups.

Under the stipulated assumptions, the allocation rule for the Bayesian optimal mechanism

in the setup with two-sided private information can be described as follows: For a given

realization of values and costs (v, c), rank all weighted virtual values in decreasing and all

weighted virtual costs in increasing order, irrespective of group membership, and then have

all those buyers and sellers trade who would trade in a Walrasian market if weighted virtual

values and costs were true values and costs. That is, letting, for all i ∈ N in buyer group b

and all j ∈M in seller group s, Vi ≡ Φb
α(vi) and Cj ≡ Γsα(cj) and

V ≡ (V1, ..., Vn) and C ≡ (C1, ..., Cm),

the optimal quantity traded is given by the largest integer k satisfying V(k) ≥ C[k], where

we use the usual conventions of setting V(0) = ∞ = C[m+1] and C[0] = −∞ = V(n+1). In the

dominant strategy implementation, trading buyers in group b pay pbk and trading sellers in

group s receive psk, where

pbk = Φb−1

α

(
max{V(k+1), C[k]}

)
and psk = Γs

−1

α

(
min{C[k+1], V(k)}

)
.

When private information pertains only to buyers, the optimal quantity is the largest

index k such that V(k) ≥ c[k]. In that case, in the dominant-strategy implementation,

trading buyers in group b pay pbk = Φb−1

α

(
max{V(k+1), c[k]}

)
. Analogously, when private

information pertains only to sellers, the optimal quantity is the largest index k such that

v(k) ≥ C[k], and in the dominant-strategy implementation, trading sellers in group s receive

psk = Γs
−1

α

(
min{C[k+1], v(k)}

)
.

Discriminatory clock auction

In the generalization of the clock auction to the setup with heterogeneous groups of buyers

and sellers, there are separate, but synchronized, clock prices for each buyer group and

each seller group. Although buyers in different groups may pay different prices and sellers in

different groups may receive different prices, the mechanism remains envy free within groups.
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A discriminatory clock auction defines state transitions for state space Ω̂, defined below,

based on buyer and seller functions φ̂ : Ω̂ → R and γ̂ : Ω̂ → R and target function τ̂ :

Ω̂ → R. Thus, we denote a discriminatory clock auction by Ĉφ̂,γ̂,τ̂ . At t ∈ {0, 1, ...}, the

state is ω̂t = (zt, ω̂
B
t , ω̂

S
t ), where zt ∈ {0, 1} specifies whether the clock auction has ended

(zt = 1) or not (zt = 0), ω̂B
t = ×b∈ZBω̂b

t , and ω̂S
t = ×s∈ZS ω̂s

t , where ω̂b
t = (NAb ,xb, pb) and

ω̂s
t = (MAs ,xs, ps) are group-specific buyer and seller states with components analogous to

the symmetric case. We require that φ̂ is increasing in each pb, that γ̂ is increasing in each

ps, and that, as in the symmetric case, τ̂(ω̂t) ∈ [φ̂(ω̂t), γ̂(ω̂t)] whenever φ̂(ω̂t) ≤ γ̂(ω̂t). The

state is initialized as in the symmetric case.

For t ∈ {0, 1, ...}, if zt = 0, then ω̂t+1 is determined as follows:

If
∑

b∈ZB n
Ab =

∑
s∈ZS m

As : If
∑

b∈ZB n
Ab = 0 or φ̂(ω̂t) ≥ γ̂(ω̂t), then ω̂t+1 = (1, ω̂B

t , ω̂
S
t ).

Otherwise, proceed as follows (the order in which clock prices on either side of the

market are moved is again immaterial): Increase the vector of buyer clock prices from

pB = (pb)b∈ZB by increasing the clock prices for the smallest number of buyer groups

possible so as to increase φ̂(ω̂t),
42 until either there is an exit by a group b̂ buyer i

at clock price vector p̂B, in which case ω̂b̂
t+1 = (NAb̂\{i}, (xb, p̂b̂), p̂b̂) and for b 6= b̂,

ω̂b
t+1 = (NAb ,xb, p̂b), or the buyer clock prices reach with no exit p̃B such that φ̂ is

equal to τ̂(ω̂t) when it is evaluated at the state ω̂t with pB replaced by p̃B, in which

case for all b, ω̂b
t+1 = (NAb ,xb, p̃b). In analogous fashion, decrease the vector of seller

clock prices and update the seller state. If both φ̂ and γ̂, evaluated at the adjusted

clock prices, reach the target τ̂(ω̂t) with no exit, then zt+1 = 1; otherwise zt+1 = 0.

If
∑

b∈ZB n
Ab >

∑
s∈ZS m

As , increase only the buyer clock prices as above until there is

an exit or all buyer clock prices reach p > maxb∈ZB v
b, and similarly for sellers if∑

b∈ZB n
Ab <

∑
s∈ZS m

As , with lower bound p < mins∈ZS c
s. The states transition

analogously to the symmetric case.

When the auction ends, active buyers pay and active sellers receive their groups’ clock

prices.

Asymptotically optimal prior-free discriminatory clock auction

Focusing on the case of two-sided private information, we show how our asymptotically

optimal prior-free clock auction can be generalized to account for differentiated groups of

42That is, φ̂(ω̂t) depends, in general, on the B clock prices (pb)b∈ZB , but it may be invariant to some of

those prices, for example if all members of a group have already exited. In addition, φ̂(ω̂t) may be invariant
to each individual price when others are held constant, for example if it is equal to the minimum of virtual
type estimates across groups and two or more groups are tied for having the minimum estimated virtual type.
We require that the vector of group-specific clock prices be increased in such a way that φ̂(ω̂t) increases and

such that for any group-specific clock price that is increased, φ̂(ω̂t) would not increase if that clock price
were not changed.
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buyers and sellers. The generalization for one-sided private information follows along similar

lines.

We define the prior-free discriminatory clock auction Ĉφ̂,γ̂,τ̂ that corresponds to the prior-

free optimal clock auction Cφ,γ,τ defined by (5)–(9). For each buyer group b and seller group

s, define σbj and σsj to be group-specific spacing estimates, analogous to the symmetric setup.

If ω̂t indicates, for each buyer group b, a clock price pb and number of active bidders nA
b
,

and if ω̂t indicates, for each seller group s, a clock price ps and number of active bidders

mAs , then let

φ̂(ω̂t) = min
b∈ZB s.t. nAb≥1

pb − χ
α,nAb+1

σb
nAb+1

and γ̂(ω̂t) = max
s∈ZS s.t. mAs≥1

ps + χα,mAs+1σ
s
mAs+1.

The target function corresponding to (9) is τ̂(ω̂t) = min
{
γ̂(ω̂t),max

{
φ̂(ω̂t), δ̃

}}
, where δ̃

satisfies∑
b∈Z̃B

1

δ̃−
(
pb−χ

α,nA
b
+1
σb
nA

b
+1

)
−(2−α)σb

nA
b
+1

=
∑

s∈Z̃S
1(

ps+χ
α,mA

s
+1
σs
mA

s
+1

)
−δ̃−(2−α)σs

mA
s
+1

,

where Z̃B is the set of buyer groups with nA
b ≥ 1 and pb − χ

α,nAb+1
σb
nAb+1

< δ̃ (so that the

target function is only defined with respect to buyer groups that still have at least one active

buyer and whose estimated virtual types are currently below the target) and Z̃S is the set

of seller groups satisfying mAs ≥ 1 and ps + χα,mAs+1σ
s
mA

s
+1
> δ̃.

One can show that the results on asymptotic optimality extend to heterogeneous groups.

This combined with arguments analogous to the case of symmetric buyers and symmetric

sellers establishes the following result.

Proposition OA.1 In the setup with heterogeneous groups of buyers and sellers, there

exists a prior-free discriminatory clock auction that is asymptotically optimal and sequentially

consistent.

2 Quasi-clock auctions

An implication of Proposition 1 in the body of the paper is that in two-sided settings the

Bayesian optimal mechanism does not permit a clock implementation. The reason for this

is that the thresholds for trading on either side of the market—for example, in the symmet-

ric setting max{v(k+1),Φ
−1
α (Γα(c[k]))} for buyers and min{c[k+1],Γ

−1
α (Φα(v(k)))} for sellers—

depend on information that is provided by an agent who optimally trades. A tradeoff thus

arises in two-sided settings between the desirable properties of clock auctions and the benefits

of Bayesian optimality.

We now briefly discuss how one could augment a clock auction and implement the

Bayesian optimal mechanism without violating privacy preservation for any trading agents
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other than the marginal pair, that is, other than the buyer with value v(k) and the seller with

cost c[k] when the optimal quantity traded is k. We refer to the augmented clock auction

as a quasi-clock auction. To save space, we restrict the discussion to the setting with sym-

metric buyers and symmetric sellers. The generalization to heterogeneous groups of buyers

and sellers is a straightforward extension. Just like the clock auction, a quasi-clock auction

consists of two clocks. It proceeds similarly to the clock auction.

Assuming each agent stays active until the clock price equals its type, when the number

of active agents on each side of the market is k − 1 and the buyer and seller clocks stop

at the prices pB = v(k) and pS = c[k], the buyers with values in the vector v(k+1) and the

sellers with costs in the vector c[k+1] become inactive as in the clock auction. However, in

contrast to the clock auction, the buyer and seller with types v(k) and c[k], who have just

exited, may still trade. In particular, they still trade if Φα(pB) ≥ Γα(pS), in which case the

trading buyers pay Φ−1α (Γα(pS)) and the trading sellers receive Γ−1α (Φα(pB)), rather than the

clock prices. If Φα(pB) < Γα(pS), then the quasi-clock auction proceeds until the earlier of

the two events: the target prices are reached or an additional agent exits.

In the quasi-clock auction, all agents are price-takers at all times. Consequently, just

like the clock auction, the quasi-clock auction endows agents with dominant strategies. It

also preserves the privacy of all but at most one trading agent on each side of the market.

However, by Li (2017, Theorem 3), it sacrifices the obviousness of the dominant strategies.

Because virtual types can be estimated analogously to the case of clock auctions, prior-free

quasi-clock auctions can also be constructed that are asymptotically optimal, and sequen-

tially consistent, and minimize mean square error among nearest neighbor estimators.

The alternative of a quasi-clock auction, which preserves the privacy of almost all trading

agents, raises the question as to why one is concerned about privacy preservation. If privacy

preservation is desired primarily to protect traders from hold-up by the designer as discussed,

e.g., by Lucking-Reiley (2000), then quasi-clock auctions arguably do as good a job as clock

auctions, provided buyers and sellers observe the clock prices on the other side of the market,

whence they can infer the prices they face. Also, although to a slightly lesser extent than clock

auctions, quasi-clock auctions protect the designer from criticism of “money left on the table”

because only the marginal traders’ values and costs are revealed. Because the difference

between the revealed types and prices will typically be “small,” quasi-clock auctions will

also not perform much worse than clock auctions if the motivation for privacy preservation

is post-auction hold-up, e.g., in the form of taxation. Therefore, if quasi-clock auctions do

not appear appealing for practical purposes, this may have less to do with their limited

ability to preserve privacy than with their failure to satisfy other desiderata such as the

obviousness of the dominant strategies and the weak group strategy-proofness this implies.43

43Satterthwaite and Williams (2002) find that for uniform distributions, the efficiency loss of any incentive
compatible, ex ante budget balanced mechanism is of the same order as the gain from trade of the marginal
pair, suggesting that departing from clock auctions to always execute this marginal trade may not be worth
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3 Rates of convergence

In this section, we provide simulation results illustrating the performance of our prior-free

clock auction in the small. As described in Section 3.4 of the paper, an r(n)-nearest neighbor

estimator has mean square error of order (r(n)/n)4+1/r(n), which is minimized when r(n) is

proportional to n4/5 (Silverman, 1986, Chapters 3 and 5.2.2), in which case the approximate

value of the mean integrated square error tends to zero at the rate n−4/5 (Silverman, 1986,

Chapter 3.7.2).

To illustrate performance in the small, we focus on an asymptotically optimal clock

auction that is sequentially consistent and uses a virtual type estimator that achieves the

minimum mean square error among nearest neighbor estimators for a designer placing weight

α ∈ [0, 1] on revenue. Specifically, we analyze the clock auction defined as follows: For any

state ω with buyer clock price pB, seller clock price pS, and an equal number j − 1 of active

buyers and sellers, the buyer and seller functions are

φ(ω) = pB − χα,jσvj and γ(ω) = pS + χα,jσ
c
j, (23)

where

χα,j ≡ max {0, α(j − 2)− (1− α)} . (24)

and

σvj ≡

{
v̂(j)−v̂(j+min{r(n),n−j})

min{r(n),n−j} , if j < n
1

n+1
, otherwise

and σcj ≡

{
ĉ[j+min{r(m),m−j}]−ĉ[j]

min{r(m),m−j} , if j < m
1

m+1
, otherwise,

(25)

where r(j) = j4/5.

To define the target function, we initialize the target at c, i.e., until the state ω reflects

at least one exit on each side of the market, let τ(ω) = c.44 Once there is at least one exit

on each side of the market, if the state shows an equal number j − 1 of active buyers and

sellers, then we define the target function as

τ(ω) = min

{
γ(ω), max

{
φ(ω),

φ(ω) + γ(ω)

2
+
(

1− α

2

) (
σvj − σcj

)}}
. (26)

As shown in Figure 5(a), this prior-free clock auction achieves over 80% of optimal ex-

pected revenue with only six buyer-seller pairs, and it achieves over 75% of optimal social

surplus even when there are as few as 2 buyers and 2 sellers. To illustrate results for small

the cost.
44This initialization handicaps the mechanism because it means that there is no possibility that all buyers

and sellers could trade. For the comparisons provided here, it seems appropriate to eliminate the possibility
that an initial target, necessarily uninformed by any data from the mechanism, happens to permit full trade.
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markets with α away from the extremes, Figure 5(a) also shows the performance of our

prior-free clock auction relative to the optimal mechanism for various intermediate values of

α. Generally speaking, the smaller is α, the smaller is the impact of estimation error, and

so the better is the performance of the prior-free clock auction. However, the mechanism’s

use of the first buyer and seller exits for estimation is a greater disadvantage relative to the

optimal mechanism, given α, when n and α are small. Thus, for small numbers of agents,

the relative performance of the prior-free clock auction can be better for larger values of α.

This is the case in Figure 5(a), where the line for α = 0 dips below the lines for α = 1/4 and

α = 1/2 when n is small. Figure 5(b) shows similar results for values and costs drawn from

the Lognormal distribution.

(a) Prior-free performance relative to the α-optimal
mechanism: Uniform distribution
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(b) Prior-free performance relative to the α-optimal
mechanism: Lognormal distribution

Figure 5: Ratio of the expected weighted objective in the prior-free clock auction Cφ,γ,τ , with
φ, γ, and τ given by (23)–(26) with r(j) = j4/5, relative to the expected weighted objective
in the α-optimal mechanism for various weights α on revenue. Panel (a): values and costs
drawn from the Uniform distribution on [0, 1]. Panel (b): values and costs drawn from the
Lognormal distribution derived from the Normal distribution with mean zero and standard
deviation 1. Panels (a) and (b) are both based on Monte Carlo simulation (5000 auctions).
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