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In this appendix, we provide the results and proofs for the asymmetric setup. In

Section 1, we summarize how the results for the asymmetric setup contrast with those for

the symmetric setup. In Section 2, we review the details of the asymmetric setup, and in

Section 3, we provide the results for the asymmetric setup with proofs.

1 Comparison between the results for the asymmet-

ric setup and for the symmetric setup

As stated in the paper, Theorem 1 holds for both the symmetric and the asymmetric

setups. Propositions 1–11 in the paper are stated for the symmetric setup. With a few

exceptions, they or their analogs continue to hold in the asymmetric setup with no or

minor additional assumptions. Corollaries 1 and 2 in the paper hold in the asymmetric

setup with no adjustments.

Propositions 2 and 4 in the paper are places where a key difference occurs. As discussed

in the paper following Proposition 2, the result that ∆SS1 < 0, which is a component of

both Propositions 2 and 4, does not hold in the asymmetric setup: When the pre-merger

suppliers are asymmetric, a merger can reduce asymmetries and so reduce the extent to

which a powerful buyer discriminates, thereby increasing social surplus.
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Proposition 3 shows that the Bulow-Klemperer-like result that BS0
pre(v) > BS1

post(v)

holds for sufficiently large v, and that the opposite inequality holds for sufficiently small

v. In contrast, in the asymmetric setup, the result for sufficiently large v no longer holds.

Even for large v, it can be the case that BS0
pre(v) < BS1

post(v).

In addition, a component of Propositions 4 and 9 does not extend to the fully asym-

metric setup. The result that ∆BS1 > ∆BS0 is derived in Proposition 4 for the case

without cost synergies and in Proposition 9 for the case with cost synergies. As dis-

cussed in the paper following Proposition 4, this result rests on symmetry between the

two merging suppliers, but continues to hold with asymmetries among other suppliers.

When the merging suppliers are not symmetric, a merger imposes an incremental harm

on a powerful buyer by removing the buyer’s ability to discriminate between the two

merging suppliers, opening the possibility that a powerful buyer could experience greater

harm from a merger than one without power.

Finally, a component of Proposition 5 relates to a lower bound for ∆BS1. In the

symmetric setup, this lower bound is increasing in n. In the asymmetric setup, we require

suppliers 1 and 2 to be symmetric in order to obtain the result that the corresponding

lower bound increases as the set of nonmerging suppliers expands in the sense of set

inclusion.

The remaining results continue to hold in the asymmetric setup either with no addi-

tional assumptions or with the assumption of virtual dominance (defined in Section 6 of

the paper and also below). As indicated below, for the parts of Propositions 5 and 6 that

provide limiting results or comparisons as the number of nonmerging suppliers increases,

the analog for the asymmetric setup involves the replication of a nonempty finite set of

nonmerging suppliers or the comparison of nested sets of nonmerging suppliers.
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Table 1: Comparison between the symmetric and asymmetric setups

Prop. Additional assumptions Results that no longer hold

1 –

2 Virtual dominance∗ 0 > ∆SS1

3 – BS0
pre(v) > BS1

post(v) for large v

4 Quantity result: –; Buyer surplus result: G1 = G2 0 = ∆SS0 > ∆SS1

5∗∗
Without BP: –;

With BP: Monotonicity of lower bound result: G1 = G2; Limit result: –

6∗∗ Without BP: –; With BP: virtual dominance

7 Without BP: –; With BP: virtual dominance

8 Without BP: –; With BP: virtual dominance

9
Monotonicity result: –; Large synergy result: –;

Small synergy result: G1 = G2

10 –

11 –

12 –

∗In the asymmetric setup, the requirement for ∆Q1 < 0 becomes: if n = 2 or if n ≥ 3 and v < min{Γ3(c), ...,Γn(c)}.
∗∗For limit results, we replicate a nonempty finite set of nonmerging suppliers. For monotonicity results, we consider market expansion that involves an expansion

of the set of nonmerging suppliers to be a superset of the prior set of nonmerging suppliers.

In Table 1, we summarize the additional assumptions required, if any, for results for

the symmetric setup to continue to hold in the asymmetric setup. A dash “–” indicates

that no additional assumptions are required. We abbreviate buyer power with “BP” in

the table to conserve on space.

2 Summary of the asymmetric setup

In the asymmetric setup, there are n ≥ 2 suppliers, indexed 1, ..., n. Each supplier

i ∈ {1, ..., n} draws a cost ci independently from a continuously differentiable distribution

Gi with support [c, c] and density gi that is positive on the interior of the support. Each

supplier is privately informed about its type, and so the suppliers’ types are unknown to

the buyer. The buyer has value v > c for one unit of the product. All of this is common

knowledge.

Supplier i’s virtual cost is denoted

Γi(c) ≡ c+
Gi(c)

gi(c)
.
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We assume that for all i, Γi(c) is increasing.

We denote the distribution for the minimum of the pre-merger costs of suppliers 1 and

2 by Ĝ(c) ≡ 1 − (1 − G1(c))(1 − G2(c)), with density ĝ. We denote the merged entity’s

virtual cost by

Γ̂(c) ≡ c+
Ĝ(c)

ĝ(c)
,

which we assume is increasing.

We assume that for all i, gi is finite at c, and for all i, we define Γi(c) ≡ limc→c Γi(c) = c,

and analogously for Γ̂. For x > Γi(c), define Γ−1
i (x) ≡ c.

We say that virtual dominance holds, if for all c1, c2 ∈ [c, c],

Γ̂ (min {c1, c2}) ≥ min{Γ1(c1),Γ2(c2)},

with a strict inequality for a positive measure set of costs. Because min{Γ(c1),Γ(c2)} =

Γ(min{c1, c2}) and Γ̂(c) ≥ Γ(c), virtual dominance holds if suppliers 1 and 2 are symmet-

ric.

Lemma A.1. Virtual dominance holds if G1 = G2.

In addition, virtual dominance holds in some cases when the merging suppliers are not

symmetric. For example, when G1 is uniform on [0, 1] and G2(c) = c for c ∈ [0, 1/4] and

G2(c) = (1 + 24c2 − 16c3)/9 for c ∈ (1/4, 1], which is depicted as the solid line in Figure

2(b) in the paper and has continuous density and increasing virtual cost.

3 Results for the asymmetric setup

In this section, we provide the details of the results for the asymmetric setup. The

propositions are labelled similarly to those for the symmetric setup, but preceded by

“A”so that, for example, Proposition A.1 below corresponds to Proposition 1 for the

symmetric case. Additional comments highlight places where the results differ from their

counterparts for the symmetric setup.

Proposition A.1. In the absence of buyer power, a merger results in the same allocation

for any realization of costs (implying that ∆Q0 = 0 and ∆SS0 = 0), and a higher expected

payment by the buyer (∆P 0 > 0).

Proof. In the absence of buyer power, distributional assumptions are not relevant, and so

the proof is the same as for Proposition 1 in the symmetric setup. �
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Although Proposition 2 shows that in the symmetric setup with buyer power, social

surplus is reduced by a merger, this result does not necessarily generalize to the case of

asymmetric pre-merger suppliers because then the buyer discriminates among suppliers

both before and after the merger. This discrimination can be socially more wasteful before

the merger than after the merger. For example, if n ≥ 3 and for all i ∈ {3, ..., n}, Gi = G,

and for i ∈ {1, 2}, Gi = 1 −
√
1−G, then for any v > Γ(c), we get ∆SS1 > 0 because

there is inefficient discrimination before but not after the merger and production occurs

with probability 1 both before and after merger. Consequently, the result in Proposition

2 that ∆SS1 < 0 does not extend to the case of pre-merger asymmetries among suppliers

without additional restrictions.

Proposition A.2. With buyer power, assuming virtual dominance holds, a merger results

in a weakly lower expected quantity traded (∆Q1 ≤ 0) (strictly if n = 2 or if n ≥ 3 and

v < min{Γ3(c), ...,Γn(c)}).

Proof. Because Γ̂ (min {c1, c2}) ≥ min{Γ1(c1),Γ2(c2)} with a strict inequality for a positive

measure set of costs (c1, c2), with positive probability the buyer discriminates against the

merged entity relative to the merging supplier with the lower virtual cost in the pre-merger

market. Thus, a merger results in a weakly lower expected quantity traded. Because

v < Γ̂(min {c1, c2}) with positive probability, min{Γ1(c1),Γ2(c2)} < v < Γ̂(min {c1, c2}),
which implies there is trade in the pre-merger market but not in the post-merger market.

Thus, ∆Q1 < 0 if n = 2. In addition, if n ≥ 3 and v < min{Γ3(c), ...,Γn(c)}, then with

positive probability

min{Γ1(c1),Γ2(c2)} < v < min{Γ̂(min {c1, c2}),Γ3(c3), ...,Γn(cn)},

in which case there is trade in the pre-merger market but not in the post-merger market.

It follows that ∆Q1 < 0 if n ≥ 3 and v < min{Γ3(c), ...,Γn(c)}. �

In the symmetric setup, Proposition 3 shows that the Bulow-Klemperer-like result

that BS0
pre(v) > BS1

post(v) holds for sufficiently large v, and that the opposite inequality

holds for sufficiently small v. In the asymmetric setup, the result for sufficiently large v

no longer holds. To see this, suppose that n = 2 and that distribution G1 has almost

all of its probability weight near c and G2 has almost all of its probability weight near

c. Then for v sufficiently large, the expected value of the second-lowest cost is close to

c, and so BS0
pre(v) is close to v − c. However, in the post-merger market, if a powerful
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buyer were to use c+c

2
as its final offer to the merged entity, that offer would be accepted

with high probability because min{c1, c2} is close to c with high probability. In that case,

the buyer’s expected surplus would be close to v − c+c

2
, which is greater than BS0

pre(v).

Because the optimal final offer by a powerful buyer in the post-merger market does at

least as well, we have BS0
pre(v) < BS1

post(v).

Proposition A.3. There exists v′ > c such that for all v ∈ (c, v′), BS0
pre(v) < BS1

post(v).

Proof. It is useful to define notation for the lowest derivative of one of g1, ..., gn that is

nonzero at c. Specifically, define

k ≡ min
{
i ∈ {0, 1, 2, ...} | ∃j ∈ {1, ..., n} s.t. g

(i)
j (c) > 0

}
.

That is, k is such that for all j ∈ {1, ..., n}, g(0)j (c) = ... = g
(k−1)
j (c) = 0 and for some

j ∈ {1, ..., n}, g(k)j (c) > 0 (the value of k is well defined because the densities g1, ..., gn

are assumed positive on the interior of the support). The case with gj(c) > 0 for some

j ∈ {1, ..., n} corresponds to k = 0.

Let H be the distribution of the second-lowest of the n cost draws, with density h,

and note that

h(y) =

n∑

i=1

gi(y)
∑

j∈{1,...,n}\{i}

Gj(y)
∏

ℓ∈{1,...,n}\{i,j}

(1−Gℓ(y))

and h(c) = 0. Before the merger with no buyer power, the buyer pays min
{
c(2), v

}
, where

c(2) is the second-lowest cost, so

BS0
pre(v) = E

[
v − c(2) | c(2) < v

]
Pr
(
c(2) < v

)
=

∫ min{v,c}

c

(v − y)dH(y).

Thus, for v < c, BS0′
pre(v) =

∫ v

c
dH(y) = H (v) , which is zero at v = c. Differentiating

again, we get, for v < c, BS0′′
pre(v) = h(v), which is also zero at v = c. More generally,

letting BS
0(j)
pre denote the j-th derivative of BS0

pre,

BS0(k+2)
pre (c) = h(k)(c) = 0.

Turning to the post-merger market with buyer power, it will be useful to consider the

post-merger mechanism that evaluates each of the nonmerging suppliers using the virtual

cost function of supplier 3. Denote the expected buyer surplus from such a potentially
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nonoptimal mechanism as B̃S(v) and note that for all v, B̃S(v) ≤ BS1
post(v). Let Ĥ be

the distribution of the lowest cost among c3, ..., cn, with density ĥ. Thus, Ĥ(c) = 1− (1−
G3(c))···(1−Gn(c)) and ĥ(c) =

∑n

i=3 gi(c)
∏

j∈{3,...,n}\{i}

(1−Gj(c)). Let Ĝ be the distribution

of the minimum of c1 and c2, with density ĝ. Thus, Ĝ(c) = 1 − (1 − G1(c))(1 − G2(c))

and ĝ(c) = g1(c)(1 −G2(c)) + g2(c)(1 − G1(c)). Letting ĉ3 denote the lowest cost among

c3, ..., cn and ĉ denote min {c1, c2} ,

B̃S(v) = E
[
v −min

{
Γ−1
3 (Γ̂(ĉ)),Γ−1

3 (v)
}
| Γ3(ĉ3) ≤ min

{
Γ̂(ĉ), v

}]

·Pr
(
Γ3(ĉ3) ≤ min

{
Γ̂(ĉ), v

})

+E
[
v −min

{
Γ̂−1(Γ3(ĉ3)), Γ̂

−1(v)
}
| Γ̂(ĉ) ≤ min {Γ3(ĉ3), v}

]

·Pr
(
Γ̂(ĉ) ≤ min {Γ3(ĉ3), v}

)
,

which we can write as

B̃S(v) =

∫ Γ̂−1(v)

c

∫ Γ−1

3
(Γ̂(ĉ))

c

(
v − Γ−1

3 (Γ̂(ĉ))
)
dĤ(c3)dĜ(ĉ)

+

∫ c

Γ̂−1(v)

∫ Γ−1

3
(v)

c

(
v − Γ−1

3 (v)
)
dĤ(c3)dĜ(ĉ)

+

∫ Γ−1

3
(v)

c

∫ Γ̂−1(Γ3(c3))

c

(
v − Γ̂−1(Γ3(c3))

)
dĜ(ĉ)dĤ(c3)

+

∫ c

Γ−1

3
(v)

∫ Γ̂−1(v)

c

(
v − Γ̂−1(v)

)
dĜ(ĉ)dĤ(c3).

Taking the derivative with respect to v, one can show that B̃S
′
(c) = 0. Differentiating

again and using Γ−1′
3 (c) = Γ̂−1′(c) = 1

2
, one can show that

B̃S
′′
(c) = 2Γ−1′

3 (c)
(
1− Γ−1′

3 (c)
)
ĥ(Γ−1

3 (c)) + 2Γ̂−1′(c)
(
1− Γ̂−1′(c)

)
ĝ(Γ̂−1(c))

=
1

2

(
ĥ(c) + ĝ(c)

)

=
1

2

(
n∑

i=3

gi(c) + g1(c) + g2(c)

)

=
1

2

n∑

i=1

gi(c),

which is positive if for some i, gi(c) > 0. More generally, for k ∈ {0, 1, ..}, one can
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show that B̃S
(k+2)

(v) contains the following terms that involve either the k-th or k+1-st

derivatives of ĝ and ĥ:

(k + 2)Γ−1′
3 (v)

(
1− Γ−1′

3 (v)
)
ĥ(k)(Γ−1

3 (v))(Γ−1′
3 (v))k(1− Ĝ(Γ̂−1(v)))

+Γ−1′
3 (v)

(
v − Γ−1

3 (v)
)
ĥ(k+1)(Γ−1

3 (v))
(
Γ−1′
3 (v)

)k+1
(1− Ĝ(Γ̂−1(v))) (1)

+(k + 2)Γ̂−1′(v)(1− Γ̂−1′(v))ĝ(k)(Γ̂−1(v))(Γ̂−1′(v))k(1− Ĥ(Γ−1
3 (v)))

+Γ̂−1′(v)(v − Γ̂−1(v))ĝ(k+1)(Γ̂−1(v))(Γ̂−1′(v))k+1(1− Ĥ(Γ−1
3 (v))).

All other terms are zero when evaluated at v = c. Thus, setting v = c and using

Γ̂−1′(v) = Γ−1′
3 (v) = 1

2
, we are left with the following:1

B̃S
(k+2)

(c) =
k + 2

2k+2
(ĥ(k)(c) + ĝ(k)(c)) =

k + 2

2k+2

n∑

i=1

g
(k)
i (c),

which is positive by the definition of k. Thus, all derivatives of BS0
pre(v) at v = c up to

and including the k+2-nd derivative are zero, and all derivatives of B̃S(v) at v = c up to

the k + 2-nd derivative are zero, but the k + 2-nd derivative is positive. Because B̃S(v)

increases faster than BS0
pre(v) at v = c, it follows that there exists v′ > c such that for all

v ∈ (c, v′), BS1
post(v) ≥ B̃S(v) > BS0

pre(v). �

As indicated in Proposition A.4, we require symmetry between the merging suppliers

(and only between the merging suppliers) to get the result that buyer power mitigates the

harm to the buyer from the transaction. When the merging suppliers are asymmetric, a

buyer with power benefits from the ability to price discriminate between suppliers 1 and

2. The loss of this ability as a result of a merger negatively affects a powerful buyer in

the post-merger market. This results in an incremental source of harm to the buyer that

only affects powerful buyers.

Proposition A.4. 0 = ∆Q0 ≥ ∆Q1 and, if suppliers 1 and 2 are symmetric, then

0 > ∆BS1 > ∆BS0.

Proof. The result that 0 = ∆Q0 ≥ ∆Q1 follows from Propositions A.1 and A.2. The

result that ∆BS1 and ∆BS0 are negative follows from Theorem 1, which applies to both

the symmetric and asymmetric setup. We show that if G1 = G2, then ∆BS1 > ∆BS0. To

1To see the induction step, note that B̃S
(k+3)

(c) can be obtained by taking the derivative of (1) once

again with respect to v and evaluating at v = c, which delivers terms involving ĥ(k+1) and ĝ(k+1) that
have coefficient (k + 3)/2k+3.
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do so, it is useful to consider a range of buyer power β ∈ [0, 1] and to define the weighted

virtual cost function for supplier i by

Γi,β(c) ≡ (1− β)c+ βΓi(c) and Γ̂β(c) ≡ (1− β)c+ βΓ̂(c).

Suppose temporarily that a buyer with buyer power β uses virtual cost function Γi,β

to evaluate supplier i in both the pre-merger and post-merger market, with virtual

cost function Γ1,β(c) = Γ2,β(c) used to evaluate the merged entity in the post-merger

market. Let x ≡ min {Γ3(c3), ...,Γn(cn),Γ1(c)} and let F be the distribution of x,

with support [c, γ] with γ ≡ min {Γ3(c), ...,Γn(c),Γ1(c)}. For such a buyer, the prob-

ability of trade is not affected by the merger, and the payment is affected only when

max{c1, c2} < min{Γ−1
1,β(v),Γ

−1
1,β(x)}, in which case the buyer pays min{Γ−1

1,β(v),Γ
−1
1,β(x)}

instead of max{c1, c2}. Thus, the expected change in buyer surplus as a result of a merger

is

2Ec[max{c1, c2} −min{Γ−1
1,β(v), x} | max{c1, c2} < min{Γ−1

1,β(v),Γ
−1
1,β(x)}]

·Pr
(
max{c1, c2} < min{Γ−1

1,β(v),Γ
−1
1,β(x)}

)
,

which we can write as

∫ γ

c

∫ min{Γ−1

1,β
(v),Γ−1

1,β
(x)}

c

∫ c2

c

(c2 −min{Γ−1
1,β(v),Γ

−1
1,β(x)})dG1(c1)dG2(c2)dF (x)

+

∫ γ

c

∫ min{Γ−1

1,β
(v),Γ−1

1,β
(x)}

c

∫ c1

c

(c1 −min{Γ−1
1,β(v),Γ

−1
1,β(x)})dG2(c2)dG1(c1)dF (x).

Differentiating with respect to β, we get:

−
∂Γ−1

1,β(v)

∂β

∫ γ

v

∫ Γ−1

1,β
(v)

c

∫ c2

c

dG1(c1)dG2(c2)dF (x)

−
∂Γ−1

1,β(v)

∂β

∫ γ

v

∫ Γ−1

1,β
(v)

c

∫ c1

c

dG2(c2)dG1(c1)dF (x) ≥ 0,

where the inequality follows because
∂Γ−1

1,β
(v)

∂β
≤ 0. Thus, for such a buyer, the change

is surplus as a result of a merger is weakly greater (closer to zero) when β = 1 than

when β = 0. This implies that for a buyer who uses virtual cost Γ̂ for the merged entity,

∆BS1 > ∆BS0. �
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We now extend Proposition 5 to the asymmetric setup. In addition to the two merging

suppliers, we posit the existence of an infinite set of potential nonmerging suppliers with

cost distributions {Gi}∞i=3 on [c, c], where each Gi satisfies our assumptions (continuously

differentiable with density gi that is positive on the interior of the support and has in-

creasing virtual cost function Γi). In order to consider effects as the market grows large in

the asymmetric setup, we consider η-fold replicas of a finite set of nonmerging suppliers.

In an η-fold replication of suppliers in finite set K ⊂ {3, 4, ...}, the set of nonmerging

suppliers consists of η suppliers drawing cost types independently from Gi for each i ∈ K.

(A straightforward extension allows there to be an additional finite set of nonmerging

suppliers that are not replicated.) Given a nonempty finite set of nonmerging suppliers

K ⊂ {3, 4, ...} and given the number of replicas η ∈ {1, 2, ...}, we let Lη
K be the distri-

bution of the lowest cost among the nonmerging suppliers when the set of nonmerging

suppliers consists of η replicas of the suppliers in K, i.e.,

Lη
K(c) ≡ 1−Πi∈K(1−Gi(c))

η.

In addition, we let L̂η
K be the distribution of the lowest virtual cost among the η replicas

of the suppliers in K, L̂η
K(z) ≡ 1− Πi∈K(1−Gi(Γ

−1
i (z)))η.

Analogous to our analysis of the symmetric case, we now develop a lower bound for

∆BS1. With buyer power, the buyer’s expected surplus before a merger when the set of

nonmerging consists of η replicas of the suppliers in K is

BS1
pre(K, η) =

∫ Γ−1

1
(v)

c

(v − Γ1(c))(1− L̂η
K(Γ1(c)))(1−G2(Γ

−1
2 (Γ1(c))))dG1(c)

+

∫ Γ−1

2
(v)

c

(v − Γ2(c))(1− L̂η
K(Γ2(c)))(1−G1(Γ

−1
1 (Γ2(c))))dG2(c)

+Y η
K,

where

Y η
K ≡ η

∑

i∈K

∫ Γ−1

i (v)

c

(v − Γi(c))
[
Πℓ∈K\{i}(1−Gℓ(Γ

−1
ℓ (Γi(c)))

η
]
(1−Gi(c))

η−1

·(1−G2(Γ
−1
2 (Γi(c))))(1−G1(Γ

−1
1 (Γi(c))))dGi(c).

We construct a lower bound for the post-merger expected buyer surplus by assuming

that the buyer evaluates the merged entity using the (suboptimal) virtual cost function
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Γ̃ defined so that

(1−G2(Γ
−1
2 (z)))(1 −G1(Γ

−1
1 (z))) = 1− Ĝ(Γ̃−1(z)),

i.e., for z ∈ [c,∞),

Γ̃−1(z) = Ĝ−1(1− (1−G2(Γ
−1
2 (z)))(1−G1(Γ

−1
1 (z)))).

Given our assumptions, Γ̃ is increasing on [c, c]. Then we have a lower bound on the

post-merger expected buyer surplus of

BS1
post(K, η) =

∫ Γ̃−1(v)

c

(v − Γ̂(c))(1− L̂η
K(Γ̃(c)))dĜ(c)

+Y η
K

1− Ĝ(Γ̃−1(Γi(c)))

(1−G2(Γ
−1
2 (Γi(c))))(1−G1(Γ

−1
1 (Γi(c))))

=

∫ Γ̃−1(v)

c

(v − Γ̂(c))(1− L̂η
K(Γ̃(c)))dĜ(c) + Y η

K ,

where the final equality uses the definition of Γ̃. This implies that a lower bound for the

change in expected buyer surplus is

∆BS1(K, η) =

∫ Γ̃−1(v)

c

(v − Γ̂(c))(1− L̂η
K(Γ̃(c)))dĜ(c)

−
∫ Γ−1

1
(v)

c

(v − Γ1(c))(1− L̂η
K(Γ1(c)))(1−G2(Γ

−1
2 (Γ1(c))))dG1(c)

−
∫ Γ−1

2
(v)

c

(v − Γ2(c))(1− L̂η
K(Γ2(c)))(1−G1(Γ

−1
1 (Γ2(c))))dG2(c).

For a givenK, for all c ∈ (c, c], 1−L̂η
K(Γ̃(c)), 1−L̂η

K(Γ1(c)), and 1−L̂η
K(Γ2(c)) converge uni-

formly to zero, which implies that for all finite sets K ⊂ {3, 4, ...}, limη→∞∆BS1(K, η) =

0.

If suppliers 1 and 2 are symmetric, i.e., G1 = G2 = G, then Γ̃ = Γ and

∆BS1(K, η) =

∫ Γ−1(v)

c

[
2Γ(c)(1−G(c))g(c)− Γ̂(c)ĝ(c)

]
(1− L̂η

K(Γ(c)))dĜ(c)

=

∫ Γ−1(v)

c

(
Γ(c)− Γ̂(c)

)
2(1−G(c))g(c)(1− L̂η

K(Γ(c)))dĜ(c).
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It follows that when suppliers 1 and 2 are symmetric, given nonempty finite sets K,K ′ ⊂
{3, 4, ...}, if K is a strict subset of K ′—in which case we refer to the change from K to

K ′ as a“market expansion”—then ∆BS1(K, 1) < ∆BS1(K ′, 1). Thus, when the merging

suppliers are symmetric, the change in expected buyer surplus increases (towards zero)

as the market expands.

Proposition A.5. With no buyer power, buyer harm decreases as the market expands,

and it goes to zero as any nonempty finite subset of nonmerging suppliers is replicated

infinitely often. With buyer power, for any nonempty finite subset of nonmerging suppliers

K and positive number of replicas η, ∆BS1(K, η) ≤ ∆BS1(K, η) ≤ 0. Moreover, if

G1 = G2, then ∆BS1(K, η) increases as the market expands, and for any G1 and G2,

∆BS1(K, η) goes to zero as the number of replicas goes to infinity. Consequently, buyer

harm goes to zero as the number of replicas goes to infinity. Likewise, harm to social

surplus goes to zero as the number of replicas goes to infinity. That is, given a nonempty

finite set of nonmerging suppliers K, limη→∞∆BS1(K, η) = 0 and limη→∞∆SS1(K, η) =

0.

Proof. Let a nonempty finite set K ⊂ {3, 4, ...} be given. Without buyer power, the

buyer’s expected surplus before the merger when facing η replicas of the nonmerging

suppliers in K is

BS0
pre(K, η) =

∫ min{v,c}

c

(v − Γ1(c))(1− LK(c))
η(1−G2(c))dG1(c)

+

∫ min{v,c}

c

(v − Γ2(c))(1− LK(c))
η(1−G1(c))dG2(c) + Zη

K ,

where

Zη
K ≡

∑

i∈K

∫ min{v,c}

c

(v − Γi(c))(1− Ĝ(c))
[
Πj∈K\{i}(1−Gj(c))

η
]
(1−Gi(c))

η−1dGi(c).

After the merger, the buyer’s expected surplus is

BS0
post(K, η) =

∫ min{v,c}

c

(v − Γ̂(c))(1− LK(c))
ηdĜ(c) + Zη

K .
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Taking the difference, we obtain

∆BS0(K, η)

= BS0
post(K, η)− BS0

pre(K, η)

=

∫ min{v,c}

c

(v − Γ̂(c))(1− LK(c))
ηdĜ(c)−

∫ min{v,c}

c

(v − Γ1(c))(1− LK(c))
η(1−G2(c))dG1(c)

−
∫ min{v,c}

c

(v − Γ2(c))(1− LK(c))
η(1−G1(c))dG2(c)

=

∫ min{v,c}

c

[
(1−G2(c))(Γ1(c)− Γ̂(c))g1(c) + (1−G1(c))(Γ2(c)− Γ̂(c))g2(c)

]
(1− LK(c))

ηdc

= −
∫ min{v,c}

c

(1− LK(c))
ηG1(c)G2(c)dc,

where the final equality uses the fact that the expression in square brackets is equal to

−G1(c)G2(c). Given nonempty finite set K ′ ⊂ {3, 4, ...} such that K ⊂ K ′, for c ∈ (c, c),

1 − LK ′(c) < 1 − LK(c), implying that ∆BS0(K ′) > ∆BS0(K). Thus, buyer harm

decreases as the market expands. In addition, because for c ∈ (c, c], (1−LK(c))
η converges

uniformly to zero as η goes to infinity, limη→∞∆BS0(K, η) = 0.

As shown above prior to the statement of the proposition, with buyer power, for any

nonempty finite subset of nonmerging suppliersK and number of replicas η, ∆BS1(K, η) ≤
∆BS1(K, η) ≤ 0. Further, when G1 = G2, ∆BS1(K, η) increases as the market expands,

and for general G1 and G2, ∆BS1(K, η) goes to zero as the number of replicas goes to

infinity.

It remains to show that limη→∞∆SS1(K, η) = 0. Before the merger, we have

SS1
pre(K, η) =

∫ Γ−1

1
(v)

c

(v − c)(1− L̂η
K(Γ1(c)))(1−G2(Γ

−1
2 (Γ1(c))))dG1(c)

+

∫ Γ−1

2
(v)

c

(v − c)(1− L̂η
K(Γ2(c)))(1−G1(Γ

−1
1 (Γ2(c))))dG2(c)

+η
∑

i∈K

∫ Γ−1

i (v)

c

(v − c)
[
Πℓ∈K\{i}(1−Gℓ(Γ

−1
ℓ (Γi(c)))

η
]
(1−Gi(c))

η−1

·(1−G2(Γ
−1
2 (Γi(c))))(1−G1(Γ

−1
1 (Γi(c))))dGi(c).
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After the merger, we have

SS1
post(K, η) =

∫ Γ̂−1(v)

c

(v − c)(1− L̂η
K(Γ̂(c)))dĜ(c)

+η
∑

i∈K

∫ Γ−1

i (v)

c

(v − c)
[
Πℓ∈K\{i}(1−Gℓ(Γ

−1
ℓ (Γi(c)))

η
]
(1−Gi(c))

η−1

·(1− Ĝ(Γ̂−1(Γi(c))))dGi(c).

Because for all c ∈ (c, c], 1− L̂η
K(Γ1(c)), 1− L̂η

K(Γ2(c)), 1− L̂η
K(Γ̂(c)), and (1−Gi(c))

η−1

converge uniformly to zero as η goes to infinity, it follows that limη→∞∆SS1(K, η) = 0,

which completes the proof. �

Proposition A.6. With no buyer power, a merger is profitable for the merging suppliers

and neutral for nonmerging suppliers. The remainder of the proposition assumes buyer

power and that virtual dominance holds. Any merger, whether it is profitable or not, bene-

fits the nonmerging suppliers. For v sufficiently large, a merger to monopoly is profitable,

and for v sufficiently small, a merger to monopoly is not profitable. Likewise, consider-

ing η-fold replicas of the nonmerging suppliers, for η sufficiently large, a merger is not

profitable.

Proof. The results with no buyer power do not rely on distributional assumptions and so

the proof is the same as for Proposition 6 for the symmetric setup.

With buyer power a merger benefits the nonmerging suppliers: With buyer power, the

expected surplus of a nonmerging supplier i is

E

[
Γi(ci)− ci | Γi(ci) < min

j 6=i
{Γj(cj), v}

]
Pr

(
Γi(ci) < min

j 6=i
{Γj(cj), v}

)

before the merger and

E

[
Γi(ci)− ci | Γi(ci) < min

j∈{3,...,n}\{i}
{Γ̂(min{c1, c2}),Γj(cj), v}

]

·Pr
(
Γi(ci) < min

j∈{3,...,n}\{i}
{Γ̂(min{c1, c2}),Γj(cj), v}

)

after the merger. Because Γi(ci)− ci > 0 for all ci > c and because the conditioning event

is less strict in the post-merger market (because Γ̂(min{c1, c2}) > min {Γ(c1),Γ(c2)}), it
follows that a merger benefits the nonmerging suppliers.
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With buyer power and v large, a merger to monopoly is profitable: When n = 2, the

merging suppliers’ joint pre-merger expected surplus is

E [Γ1(c1)− c1 | Γ1(c1) < min{Γ2(c2), v}] Pr (Γ1(c1) < min{Γ2(c2), v})
+E [Γ2(c2)− c2 | Γ2(c2) < min{Γ1(c1), v}] Pr (Γ2(c2) < min{Γ1(c1), v})

and after the merger it is

E
[
Γ̂(min{c1, c2})−min{c1, c2} | Γ̂(min{c1, c2}) < v

]
Pr
(
Γ̂(min{c1, c2}) < v

)
.

In the limit as v goes to infinity, the probability of trade in the post-merger market goes

to 1. Thus, in the limit as v goes to infinity, the joint expected surplus of the merging

suppliers after the merger is

E
[
Γ̂(min{c1, c2})−min{c1, c2}

]

and their joint expected surplus before the merger is

E [Γ1(c1)− c1 | Γ1(c1) < Γ2(c2)] Pr (Γ1(c1) < Γ2(c2))

+E [Γ2(c2)− c2 | Γ2(c2) < Γ1(c1)] Pr (Γ2(c2) < Γ1(c1))

≤ E[min {Γ1(c1),Γ2(c2)} −min{c1, c2}]
< E

[
Γ̂(min{c1, c2})−min{c1, c2}

]
,

where the final inequality uses virtual dominance and establishes the result.

With buyer power and v small, a merger to monopoly is not profitable: The proof that

with buyer power and v small, a merger to monopoly is not profitable follows in similar

fashion to the proof for the symmetric setup. Suppose a merger to monopoly, i.e., n = 2.

We define p1(v) and p2(v) to be the buyer’s optimal final offers to suppliers 1 and 2,

respectively, as a function of v in the pre-merger market. Define p̂(v) to be the buyer’s

optimal final offer to the merged entity in the post-merger market. Thus, for i ∈ {1, 2},
Γi(pi(v)) = v and Γ̂(p̂(v)) = v, implying that p1(c) = p2(c) = p̂(c) = c. We define Π(p1, p2)

and Π̂(p) to be the joint expected profit of the two merging suppliers as a function of the

final offers. Before the merger, given final offers p1 and p2, the joint expected profit of the
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two merging suppliers is

Π(p1, p2) =

∫ p1

c

(p1 − c1)(1−G2(p2))dG1(c1) +

∫ p2

c

(p2 − c2)(1−G1(p1))dG2(c2)

+

∫ p1

c

∫ Γ−1

2
(Γ1(c1))

c

(Γ−1
2 (Γ1(c1))− c2)dG2(c2)dG1(c1)

+

∫ p2

c

∫ Γ−1

1
(Γ2(c2))

c

(Γ−1
1 (Γ2(c2))− c1)dG1(c1)dG2(c2),

where the first two terms are the joint profit of the two suppliers if they do not compete

against each other and the lowest-cost supplier is paid the final offer. The other two terms

reflect the low-virtual-cost supplier being paid its threshold payment as determined by

the other supplier’s report. Given a take-it-or-leave-it offer p, the post-merger expected

profit is

Π̂(p) =

∫ p

c

(p− c)dĜ(c) =

∫ p

c

G(y)(2−G(y))dy.

Note that Π(p1(c), p2(c)) = Π̂(p̂(c)) = 0. We show that Π(p1(v), p2(v)) increases

faster than Π̂(p̂(v)) at v = c, implying by continuity that Π(p1(v), p2(v)) > Π̂(p̂(v))

for v in a neighborhood to the right of c. Specifically, letting f(v) ≡ Π(p1(v), p2(v))

and f̂(v) ≡ Π̂(p̂(v)), we look at the derivatives of f(v) − f̂(v), evaluated at v = c,

and show that the “first time” the derivatives differ, the derivative is positive, i.e., if

j = min{i ∈ {1, 2, ...} | f (i)(c) 6= f̂ (i)(c)}, then f (j)(c)− f̂ (j)(c) > 0, where f (j) denotes the

j-th derivative of f . The index j is well defined because f(c) = f̂(c) and for v sufficiently

large, f(v) 6= f̂(v).

In order to illustrate the logic of the proof, we begin by considering the case with

g1(c) > 0 and g2(c) > 0. First, consider the derivatives of Γi and Γ̂. As always, Γi(c) =

Γ̂(c) = c. When g1(c) > 0 and g2(c) > 0, Γ′
1(c) = Γ′

2(c) = Γ̂′(c) = 2, Γ′′
1(c) = −g′1(c)

g1(c)
,

Γ′′
2(c) = −g′

2
(c)

g2(c)
, and

Γ̂′′(c) = −g′1(c) + g′2(c)

g1(c) + g2(c)
+

2g1(c)g2(c)

g1(c) + g2(c)
,

implying that

(g1(c) + g2(c)) Γ̂
′′(c)− g1(c)Γ

′′
1(c)− g2(c)Γ

′′
2(c)

= −g′1(c)− g′2(c) + 2g1(c)g2(c) + g′1(c) + g′2(c) (2)

= 2g1(c)g2(c).
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Using the definitions of p and p̂ and the equality of Γi and Γ̂ and their first derivatives

at c, we have

p′1(c) = p′2(c) = p̂′(c) = 1/Γ′
1(c) > 0 (3)

and for i ∈ {1, 2},

p′′i (c) = −(p′i(c))
2

Γ′
i(c)

Γ′′
i (c) and p̂′′(c) = − (p̂′)2

Γ̂′(c)
Γ̂′′(c).

We now turn to the functions Π and Π̂. We let Π̂(i) denote the i-th derivative of Π̂,

and we let Π(i,j) ≡ ∂i+j

∂pi
1
∂p

j
2

Π. Note that Π(1,0)(c, c) = Π(0,1)(c, c) = Π̂′(c) = 0. In addition,

when g1(c) > 0 and g2(c) > 0, then

Π(1,1)(c, c) = 0, Π(2,0)(c, c) = g1(c), Π(0,2)(c, c) = g2(c),

Π(2,1)(c, c) = Π(1,2)(c, c) = −g1(c)g2(c),

Π(3,0)(c, c) = g′1(c) + g1(c)g2(c) and Π(0,3)(c, c) = g′2(c) + g1(c)g2(c).

For the post-merger market,

Π̂(2)(c) = ĝ(c) = g1(c) + g2(c)

and

Π̂(3)(c) = ĝ′(c) = g′1(c) + g′2(c)− 2g1(c)g2(c).

Thus,

Π(3,0)(c, c) + Π(0,3)(c, c) + 3
(
Π(2,1)(c, c) + Π(1,2)(c, c)

)
− Π̂(3)(c) = −2g1(c)g2(c) (4)

and (dropping the argument(s) c for readability)

Π(2,0)p′′1 +Π(0,2)p′′2 − Π̂(2)p̂′′ = −g1
(p′1)

2

Γ′
1

Γ′′
1 − g2

(p′2)
2

Γ′
2

Γ′′
2 + (g1 + g2)

(p̂′)2

Γ̂′
Γ̂′′

=
(
−g1Γ

′′
1 − g2Γ

′′
2 + (g1 + g2) Γ̂

′′
) (p′1)

2

Γ′
1

(5)

= 2g1g2
(p′1)

2

Γ′
1

= g1g2(p
′
1)

2,
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where the second equality uses Γ′
1 = Γ′

2 = Γ̂′ and p′1 = p′2 = p̂′, the third equality uses (2),

and the fourth equality uses Γ′
1 = 2.

Moving beyond the case in which g1(c) > 0 and g2(c) > 0, under virtual dominance,

there exists k ∈ {0, 1, ...} such that for i ∈ {1, 2}, gi(c) = g′i(c) = ... = g
(k−1)
i (c) = 0 and

for i ∈ {1, 2}, g(k)1 (c) > 0 and g
(k)
2 (c) > 0. In this case, (4) and (5) can be written in terms

of k as

Π(2k+3,0)(c, c) + Π(0,2k+3)(c, c)

+
(
2k+3
k+2

) (
Π(k+1,k+2)(c, c) + Π(k+2,k+1)(c, c)

)
− Π̂(k)(c) (6)

= −(k + 1)(k + 2)g
(k)
1 (c)g

(k)
2 (c),

where
(
a

b

)
denotes the binomial coefficient a!/(b!(a− b)!), and

Π(k+2,0)(c, c)p
(k+2)
1 (c) + Π(0,k+2)(c, c)p

(k+2)
2 (c)− Π̂(k+2)p̂(k+2)(c) (7)

= g
(k)
1 (c)g

(k)
2 (c)(p′1(c))

k+2.

Now, for the case of g1(c) > 0 and g2(c) > 0, consider the derivatives of f(v)− f̂(v),

evaluated at v = c. The first derivative is zero. Evaluating the second derivative at c and

dropping the argument c for readability, we have:

f ′′ − f̂ ′′ = Π(2,0)p′21 +Π(0,2)p′22 + 2Π(1,1)p′1p
′
2 +Π(1,0)p′′1 +Π(0,1)p′′2 −

(
Π̂′′p̂′2 + Π̂′p̂′′

)

= g1p
′2
1 + g2p

′2
2 − (g1 + g2)p̂

′2

= 0.

At the third derivative, we have a difference:

f ′′′ − f̂ ′′′ =
(
Π(3,0) +Π(0,3) + 3

(
Π(2,1) +Π(1,2)

)
− Π̂(3)

)
(p′1)

3

+3
(
Π(2,0)p′′1 +Π(0,2)p′′2 − Π̂(2)p̂′′

)
p′1

= −2g1g2(p
′
1)

3 + 3
(
g1g2(p

′
1)

2
)
p′1

= (−2 + 3) g1g2(p
′
1)

3

> 0,

where the second equality uses (4) and (5), the third equality rearranges, and the inequal-

ity uses the assumptions that g1(c) > 0 and g2(c) > 0 and the result that p′1 > 0, which

is stated in (3). This completes the proof for the case in which gi(c) > 0.
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In the general case in which for i ∈ {1, 2}, gi(c) = g′i(c) = ... = g
(k−1)
i (c) = 0 and for

i ∈ {1, 2}, g(k)1 (c) > 0 and g
(k)
2 (c) > 0, we have:

f (2k+3) − f̂ (2k+3) =
(
Π(2k+3,0) +Π(0,2k+3) + 3

(
Π(k+2,k+1) +Π(k+1,k+2)

)
− Π̂(2k+3)

)
(p′1)

2k+3

+
(
2k+3
k+2

) (
Π(k+2,0)p

(k+2)
1 +Π(0,k+2)p

(k+2)
2 − Π̂(k+2)p̂(k+2)

)
(p′1)

k+1

= −(k + 1)(k + 2)g
(k)
1 g

(k)
2 (p′1)

2k+3 +
(
2k+3
k+2

) (
g
(k)
1 g

(k)
2 (p′1)

k+2
)
(p′1)

k+1

=
(
−(k + 1)(k + 2) +

(
2k+3
k+2

))
g
(k)
1 g

(k)
2 (p̂′)2k+3

> 0,

where the second equality uses (6) and (7), the third inequality rearranges, and the

inequality uses the definition of k, the positivity of p′(c) as stated in (3), and the result

that for all k ∈ {0, 1, ...},

0 < −(k + 1)(k + 2) +
(2k + 3)!

(k + 2)! (k + 1)!
.

This completes the proof that with buyer power and v small, a merger to monopoly is

not profitable.

With buyer power and considering η-fold replicas of the nonmerging suppliers, for η suf-

ficiently large, a merger is not profitable: Let n > 2 and consider a market that in-

cludes suppliers 1 and 2 plus η-fold replication of the nonmerging suppliers {3, ..., n}.
Denote by c̃(1) the lowest virtual cost for any of the η(n − 2) nonmerging suppliers, i.e.,

c̃(1) ≡ minj∈{3,...,n},κ∈{1,...,η} Γj(c
κ
j ). Before the merger, in the limit as η goes to infinity,

with probability 1, the reserve based on the buyer’s value does not bind and a winning

supplier i ∈ {1, 2} is paid Γ−1
i (c̃(1)). Thus, in the limit, the joint surplus of the merg-

ing suppliers, conditional on one of them winning, is Γ−1
1 (c̃(1)) − c1 if Γ1(c1) < Γ2(c2)

and Γ−1
2 (c̃(1)) − c2 if Γ2(c2) < Γ1(c1). As η goes to infinity, c̃(1) → c almost surely and

for i ∈ {1, 2}, Γ−1
i (c̃(1)) → c almost surely. Because Γ1 and Γ2 are equal and have the

same slope at c (recall that Γ′
1(c) = Γ′

2(c) = 2), in the limit as η goes to infinity, condi-

tional on supplier 1 or supplier 2 winning, with probability 1 the supplier with the lower

virtual cost also has the lower cost. Thus, in the limit as η goes to infinity, in the pre-

merger market, conditional on one of the merging supplier’s winning, their joint surplus

is min
{
Γ−1
1 (c̃(1)),Γ

−1
2 (c̃(1))

}
− min {c1, c2}. After the merger, in the limit as η goes to

infinity, with probability 1, a winning merged entity has surplus Γ̂−1(c̃(1)) −min{c1, c2}.
As η goes to infinity, Γ̂−1(c̃(1)) → c almost surely. By virtual dominance, for all c̃(1) > c,
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Γ̂−1(c̃(1)) < min
{
Γ−1
1 (c̃(1)),Γ

−1
2 (c̃(1))

}
, which implies that for η sufficiently large, the ex-

pected joint surplus of the merging suppliers is greater before the merger than after the

merger. �

Proposition A.7. In the absence of buyer power, a merger is neutral for nonmerging

suppliers and so does not induce entry, but with buyer power and assuming virtual domi-

nance holds, a merger increases the expected payoff from entry and so potentially induces

entry.

Proof. In the absence of buyer power, distributional assumptions are not relevant, and so

the proof is the same as for Proposition 7 for the symmetric setup. With buyer power and

assuming virtual dominance holds, a merger induces the buyer to discriminate against the

merging suppliers, which shifts market shares to the nonmerging suppliers and therefore

increases the profitability of entry. �

Proposition A.8. Without buyer power, a merger is neutral for nonmerging suppliers’

incentives to invest and increases the merging suppliers’ incentives to invest. With buyer

power and assuming virtual dominance holds, a merger increases incentives to invest

for nonmerging suppliers but can either increase or decrease incentives for the merging

suppliers.

Proof. Let πβ
i (c) be supplier i’s expected profit before the merger when its cost is c and

the buyer’s power is β, and let π̂β
i (c) be the expected profit after the merger of supplier

i in the same contingency, where for i ∈ {1, 2}, this is expected profit per plant. Letting

Gi,I denote supplier i’s cost distribution after investment, we assume Gi,I(c) ≥ Gi(c) for

all c ∈ [c, c]. We say that for a given β, supplier i’s incentives to invest increase with the

merger if ∫ c

c

π̂β
i (c)[dGi,I(c)− dGi(c)] >

∫ c

c

πβ
i (c)[dGi,I(c)− dGi(c)], (8)

and we say that a merger is neutral (decreases incentives to invest) for supplier i if∫ c

c
π̂β
i (c)[dGi,I(c)− dGi(c)] = (<)

∫ c

c
πβ
i (c)[dGi,I(c)− dGi(c)]. Evidently, (8) is equivalent

to ∫ c

c

[π̂β
i (c)− πβ

i (c)]dGi,I(c) >

∫ c

c

[π̂β
i (c)− πβ

i (c)]dGi(c). (9)

Because we assume that Gi first-order stochastically dominates Gi,I , it follows that a

merger increases (decreases) incentives to invest for i if π̂β
i (c)−πβ

i (c) decreases (increases)
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in c and is neutral for i if π̂β
i (c) − πβ

i (c) is constant. In what follows, our focus is thus

naturally on the sign of the derivative of the expression π̂β
i (c)− πβ

i (c).

Rivals’ incentives: Let us first consider the incentive effects of the rivals of the merging

suppliers, that is, suppliers i = 3, .., n, beginning with the case without buyer power. By

the revenue (or payoff) equivalence theorem, we know that in any incentive compatible

mechanism the interim expected payoff of supplier i when his cost is c ∈ [c, c] is
∫ c

c
qi(x)dx

plus a constant (which under the assumptions we impose is 0), where qi(x) is the prob-

ability that i produces and is determined by the allocation rule. Before the merger, the

probability that i produces is Πj 6=i(1−Gj(x)). Thus, for all c ≤ min{v, c},

π0
i (c) =

∫ min{v,c}

c

Πj 6=i(1−Gj(x))dx, (10)

and π0
i (c) = 0 for all c larger than Γ−1

i (v). Without buyer power, Πj 6=i(1−Gj(x)) is also

the probability that i produces after the merger, so we have π̂0
i (c) = π0

i (c) for all c and

all i ∈ {3, ..., n}. Thus, without buyer power, a merger is neutral for rivals’ incentives to

invest.

With buyer power, for all c ≤ Γ−1
i (v) (recall that we define Γ−1

i (v) so that Γ−1
i (v) ≤ c)

and all i ∈ {3, ..., n},

π1
i (c) =

∫ Γ−1

i (v)

c

Πj 6=i(1−Gj(Γ
−1
j (Γi(x))))dx,

and

π̂1
i (c) =

∫ Γ−1

i (v)

c

Πj∈{1,2}(1−Gj(Γ̂
−1(Γi(x))))Πj∈{3,...,n}\{i}(1−Gj(Γ

−1
j (Γi(x))))dx,

and, of course, π1
i (c) = 0 = π̂1

i (c) for all c greater than Γ−1
i (v). Thus, for all c ≤ Γ−1

i (v),

π̂1′
i (c)− π1′

i (c) = −
[
Πj∈{1,2}(1−Gj(Γ̂

−1(Γi(c))))− Πj∈{1,2}(1−Gj(Γ
−1
j (Γi(c))))

]

·Πj∈{3,...,n}\{i}(1−Gj(Γ
−1
j (Γi(c))))

≤ 0,

where the inequality is strict for all c ∈ (c,Γ−1
i (v)) because by virtual dominance Γ̂−1(Γi(c)) <

Γ−1
j (Γi(c)) for all such c. Thus, with buyer power and assuming virtual dominance holds,

a merger increases rivals’ incentives to invest.

Merging suppliers’ incentives: Consider now the merging suppliers’ incentives to invest.
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Without buyer power, for i ∈ {1, 2}, π0
i (c) is as defined above. After the merger, for

c ≤ min{v, c},

π̂0
1(c) =

∫ min{v,c}

c

(1−G2(c))Π
n
j=3(1−Gj(x))dx

and

π̂0
2(c) =

∫ min{v,c}

c

(1−G1(c))Π
n
j=3(1−Gj(x))dx,

and π0
1(c) = π0

2(c) = 0 for all larger c. Observing that, for i, j ∈ {1, 2} with i 6= j and

c ≤ min{v, c},
π̂0′
i (c)− π0′

i (c) = − gj(c)

1−Gj(c)
π̂0
i (c) ≤ 0,

with a strict inequality for all c ∈ [c,min{v, c}), unless gj(c) = 0, and π̂0′
i (c)− π0′

i (c) = 0

otherwise, it follows that without buyer power a merger increases the merging suppliers’

incentives to invest per plant.

Finally, we address the merging suppliers’ incentives to invest in the presence of buyer

power, which is the only case for which the merger-related change in incentives cannot be

signed. Before the merger, for i ∈ {1, 2}, π1
i (c) is as defined above. After the merger, for

c ≤ Γ̂−1(v) and i, j ∈ {1, 2} with i 6= j,

π̂1
i (c) =

∫ Γ̂−1(v)

c

(1−Gj(c))Πk∈{3,...,n}(1−Gk(Γ
−1
k (Γ̂(x))))dx,

implying, for c ≤ Γ̂−1
i (v),

π̂1′
i (c)− π1′

i (c)

= −(1 −Gj(c))[Πk∈{3,...,n}(1−Gk(Γ
−1
k (Γ̂(x))))− Πk∈{3,...,n}(1−Gk(Γ

−1
k (Γi(c))))]︸ ︷︷ ︸

<0

− gj(c)

1 −Gj(c)
π̂1
i (c)︸ ︷︷ ︸
>0

,

while for c ∈ (Γ̂−1(v),Γ−1
i (v)),

π̂1′
i (c)− π1′

i (c) = −π1′
i (c) > 0.

Thus, with buyer power, the effects of the merger on the merging suppliers’ incentives to

invest cannot be signed in general. �
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To extend Proposition 9 to the asymmetric setup, as in Proposition A.4, we require

symmetry between suppliers 1 and 2 for the comparison between ∆BS1(s) and ∆BS0(s)

for small synergies:

Proposition A.9. With cost synergies, the buyer’s harm from a merger decreases with

cost synergies, i.e., ∆BS0(s) and ∆BS1(s) are both increasing in s. For s sufficiently

close to one, ∆BS0(s) > ∆BS1(s) > 0, and assuming G1 = G2, for s sufficiently close

to zero, 0 > ∆BS1(s) > ∆BS0(s).

Proof. Recall that in the setup with cost synergies, we assume that c = 0. Given s ∈ [0, 1],

c1, and c2, the merged entity’s cost is (1 − s)min{c1, c2}. The distribution of costs after

the merger for the merged entity is, for c ∈ [0, (1 − s)c], G(c) ≡ Ĝ(c/(1 − s)), with

density g(c) ≡ ĝ(c/(1 − s))/(1 − s). Because cost synergies improve the merged entity’s

distribution, cost synergies monotonically increase the set of trades that are beneficial to

the buyer. Thus, the buyer would benefit monotonically from cost synergies if it employed

the same mechanism as without cost synergies. When the buyer optimally adjusts its

mechanism to account for synergies, the monotonicity is preserved, where for β = 0 the

adjustment is the set the reserve equal to min{v, (1− s)c}.
When s = 1, the post-merger buyer has payoff v regardless of buyer power, while the

pre-merger buyer has higher expected surplus with buyer power than without, implying

that ∆BS0(1) > ∆BS1(1) > 0. Assuming G1 = G2, the result that ∆BS1(s) > ∆BS0(s)

for s sufficiently close to zero follows from Proposition A.4 and continuity. �

Corollary 1. In the absence of buyer power, a competition authority using a social sur-

plus standard is more permissive than one using a buyer surplus standard. Formally,

∆SS0(s) ≥ 0 for all s ∈ [0, 1], while ∆BS0(s) ≥ 0 if and only if s ∈ [s∗, 1] with s∗ > 0.

Proof. In the absence of buyer power, distributional assumptions are not relevant, and

so the proof is the same as for Corollary 1 for the symmetric setup. �

Proposition A.10. With cost synergies, no buyer power, and two suppliers, the following

holds:

(i) if v < c, then the merged entity’s expected surplus increases and then decreases as

cost synergies increase; that is, there exists ŝ ∈ (0, 1) such that Π̂(s) increases in s

for s < ŝ and decreases in s for s > ŝ),
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(ii) if v ≥ c, then the merged entity’s expected surplus decreases as cost synergies in-

crease; that is, Π̂(s) decreases in s for all s ∈ [0, 1];

(iii) the merged entity’s expected surplus is zero when s = 1; that is, Π̂(1) = 0.

Proof. In the absence of buyer power, distributional assumptions are not relevant, and

so the proof is the same as for Proposition 10 for the symmetric setup. �

Proposition A.11. With cost synergies, buyer power, and two suppliers, the price faced

by the merged entity is 0 if s = 1 and otherwise decreases in s.

Proof. The proof relies only on the properties of the post-merger reserve for the merged

entity, p1(s) ≡ (1−s)Γ̂−1(v/(1−s)), which is not affected by distributional asymmetries.

Thus, the proof is the same as for Proposition 11 for the symmetric setup. �

Corollary 2. With cost synergies, the expected surplus of the merged entity is maximized

at a level of cost synergies strictly less than one.

Proof. Without buyer power, Proposition A.10(iii) implies that Π̂(1) = 0. The same

intuition carries over to the case with buyer power—as s goes to 1, the merged entity

is left with no private information, so Π̂(1) = 0. Because, both with and without buyer

power, the expected surplus of the merged entity is positive when s = 0, the result follows.

�

24


